A Solution of the Problem of Rotation of the Celestial Bodies*

T. R. Tilchev

1. Introduction

For explanation of the axial rotation of the celestial bodies several hypotheses are proposed. Shmidt [1] considers the direct rolation of the planets and of the Sun as a result of the falling meteoric particles upon them. Artemyev and Radzievskii [2] assume that the meteoric particles falling on the planet transfer their positive momentums only and imm it directly about its own axis. Recently it was discovered, however, that Venus has a retrograde rotation. The planet Uranus is also rotating retrogradely. Alfven considers the axial rotation of the celestial bodies as a result of the action of magnetic forces. These hypotheses are not satisfactory and the phenomenot is still a lopical problem, In this paper a new explanation of this phenomenon is proposed.

2. Method and Results

We proceed from the following original experiment. A bomogeneous sphere with radius r is circulating in an circumference with radius r_{1} lying in a horizontal plate. The sphere can rotate freely about its own axis perpendicular to the plane of the circumference. The system has two degrees of freedom. Let us designate by $\Omega_{\text {, }}$ the initial angular velocily of the circular motion of the sphere, by Ω_{2} the angular velocity of its circular motion at the end of a certain interval of time ΔT and by ω the angular velocity of the proper axial rotation of the sphere. We observe that

1. At $\Omega_{1}=\Omega_{2}=$ const, i. e. at a uniform citcular motion $\omega=0$; the sphere does not rotate about its own axis.
2. At $\Omega_{1}>\Omega_{2}$, i. e. at a decelerate circulat motion $\omega>0$; the sphere obtains a direct axial rotation.
3. At $\Omega_{1}<\Omega_{2}$, i. . at an accelerate circular motion $\omega<0$; the splere obtains a retrograde axial rotation.

FFor open discussion.

It is not difficuit to see that the axial rotation of the sphere is caused by the action of the unequal forces of inertia of the particles of the sphere which appear at the change of the angulat velocity of its circular motion. The value of the forces of inertia of the particles of the sphere depends on their distance to the centre of the citcumference and on the difference $\left|Q_{1}-\Omega_{3}\right|$.

The angular velocity of the circular motion

Fig 1 of the sphere can be changed by difect action or by the change of the fadius of the circumference from r_{1} to r_{2}.

We have to determine the angular velocity of the axial rotation of the sphere ω obtained at the change of the angular velocity of its circular motion from Ω_{1} to Ω_{2}.

We solve this problem in the following way. The cylindrical surface passing through the circumfercnce and the rotational axis of the sphere divides the sphere in two parts: exterbal one with mass m_{1} and internal one with mass m_{2}; as shown in Fig. 1. We solve the problem at $r_{1} \gg$ so that we could assume $m_{1}-m_{3} \cdot m$. A similat case we have, for example, at a spherical artifical Earth's satellite. The part of is orbit limited by the satellite is almost a straight line.

We designate by F_{c} and F_{i} the resultants of the particles' forces of inertia of the external (dashed) and interual hemispheres. We assume with sufficient accuracy that at $r_{1}>r$ the fulcrums of the resultants F_{c} and F_{i} are at a distance equal to $3 / 8 \mathrm{r}$ from the centre of the sphere. We designate the force, which turns the sphete about its axis (directly at $\Omega_{1}>\Omega_{n}$ as shown in Fig. $1_{\text {, }}$ and relrogradely at $\Omega_{1}<Q_{2}$) by F.
Obviously
(1)
or
(2)

$$
F=F_{\mathrm{e}}-F_{\mathrm{i}},
$$

where a_{e} and a_{i} are the tangential accelerations of the mass-cetitres of the external and internal hemispheres.

At the change of the angular velocity of the circular motion of the sphere from U_{1} to Ω_{2} the linear speed of the mass-centre of the extemai hemisphere changes from $V_{\text {ef }}$ to $V_{\mathrm{e} 2}$, and that of the internal hemisphcre from $V_{i 1}$ to $V_{i d}$. At the same time the mass-centre of the external hemisphere, whete the fulcrum of the force F is formally assumed, passes a path $S-S_{\mathrm{e} 2}-S_{\mathrm{cl}}$. Multiplying both parts of (2) by $d s$ and integrating in the above limits we obtain

$$
\begin{align*}
& \int_{S_{\mathrm{c} 1}}^{s_{\mathrm{e} 2}} F d s s_{1}-m \int_{V_{\mathrm{e} 2}}^{V_{\mathrm{o} 2}} v d v-\left(-m \int_{V_{11}}^{V_{\mathrm{i} 2}} d v\right)=m \int_{V_{\mathrm{e} 2}}^{V_{\mathrm{e} 2}} d v-m \int_{V_{\mathrm{i} 2}}^{V_{\mathrm{il}}} d v \mid, \tag{3}\\
& A=-\left(\frac{m V_{\mathrm{et}}^{2}}{2}-\frac{m V_{\mathrm{e} 2}^{2}}{2}\right)-\left(\frac{m V_{12}^{2}}{2}-\frac{m V_{i 2}^{2}}{2}\right) \text {, } \tag{4}
\end{align*}
$$

where A is the work of the force F in the path S.

The kinetic energy E of the obtained axiat rotation of the sphere is equal to the work of the force F, i, e. $E=: A$

$$
\begin{equation*}
E=-\frac{2}{5} X^{2 m r^{2}\left(\omega^{2}\right.}, \tag{5}
\end{equation*}
$$

where $2 m$ is the mass of the sphere. From (4) and (5) we obtain

$$
\begin{align*}
& 4 r^{2} \omega_{0}^{2}=\left(V_{\mathrm{el}}^{2}-V_{\mathrm{t} 2}^{2}\right)-\left(V_{11}^{2}-V_{12}^{2}\right) ; \tag{6}\\
& V_{\mathrm{ei}}=\Omega_{1}\left(r_{1}+3 / 8 r\right) ; V_{\mathrm{t} 2}=: Q_{2}\left(r_{1}+3 / 8 r\right) ; \\
& V_{11}=\Omega_{1}\left(r_{1}-3 / 8 r\right) ; \quad V_{12}=\Omega_{2}\left(r_{1}-3 / 8 r\right) .
\end{align*}
$$

With the above values of $V_{e 1}, V_{e 2}, V_{11}$ and $V_{i 2}$ in (6) we obtain

$$
\begin{equation*}
\pm \omega=\sqrt{\frac{15 r_{1}}{8 r}\left|\left(\Omega_{1}^{2}-\Omega_{2}^{2}\right)\right|} \tag{7}
\end{equation*}
$$

If the change of the angular velocity of the circular motion of the sphere is performed by chatging the radius of the circumference from r_{1} to r_{2}, formula (7) takes the form

$$
\begin{equation*}
\pm \omega=\sqrt{\frac{15}{8 r}\left|\left(\Omega_{1}^{2} r_{1}-\Omega_{2}^{2} r_{g}\right)\right|} \tag{8}
\end{equation*}
$$

The relations (7) and (8) are valid in an uniform field of gravitation. For a homogeneous spherical satellite moving in a non-uniform field of gravitation, however, (4) has the form

$$
\begin{equation*}
A=E=!\left[\left(\frac{m V_{\mathrm{el}}^{2}}{2}+E_{\mathrm{p}}^{\mathrm{el}}\right)-\left(\frac{m V_{\mathrm{e}}^{2}}{2}+E_{\mathrm{p}}^{\mathrm{ez}}\right)\right]-\left[\left(\frac{m V_{11}^{2}}{2}+E_{\mathrm{p}}^{11}\right)-\left(\frac{m V_{12}^{2}}{2}+E_{\mathrm{p}}^{\mathrm{i2}}\right)\right]{ }_{1}^{1}, \tag{9}
\end{equation*}
$$

where E_{p}^{c} and E_{p} are the potential energies of the external and internal hemispheres ${ }^{p}$ of the satellite. At our faboratory experiment we have $E_{\mathrm{p}}^{\mathrm{e}}=E_{\mathrm{p}}^{\mathrm{u2}}-E_{\mathrm{p}}^{11}=E_{\mathrm{p}}^{i 2}=m g h$, so that in this case (9) is reduced to (4).

The total energy of a honogeneous spherical Earth's satellite moving in a circular orbit is

$$
E_{\mathrm{k}}+E_{\mathrm{p}}=\frac{O M 2 m}{2 r_{1}}+G M 2 m\left(\frac{1}{R}-\frac{1}{r_{1}}\right)=\operatorname{CM} 2 m\left(\frac{1}{R}-\frac{1}{2 r_{1}}\right)
$$

where M is the mass of the Earth, R is the average radius of the Earth, r_{1} is the distance of the satellite to the centre of the Earth. For such a satellite passing from one orbit to ancther one (9) takes the form

$$
2 m r^{2} \omega^{2}=G M m \left\lvert\,\left\{\left[\left(\frac{1}{-}-\frac{1}{2\left(r_{1}+3+8 r\right)}\right)-\left(\frac{1}{R}-\frac{1}{2\left(r_{2}+3 / 8 r\right)}\right)\right]\right.\right.
$$

$$
\begin{equation*}
\left.-\left[\left(\frac{1}{R} \cdot \frac{1}{2\left(r_{1}-3 / 8 r\right)}\right)-\left(\frac{1}{R}-\frac{1}{2\left(\frac{1}{r_{2}}-3 / \overline{8 r}\right)}\right)\right]\right\} \mid . \tag{10}
\end{equation*}
$$

From (10) we obtain

$$
\begin{equation*}
\left.\pm \omega=\sqrt{\frac{15}{15 r}\left(-\frac{G M}{r_{1}^{2}-(3 / 8 r)^{2}}-\frac{G M}{r_{2}^{2}-(3 / 8 \eta)^{2}}\right)} \right\rvert\, . \tag{15}
\end{equation*}
$$

The total energy of a homogeneous spherical Earth's Satellite moving in an eliptical orbit is

$$
E_{\mathrm{k}}+E_{\mathrm{p}}=-\quad \text { OM2m}\left(\frac{2}{r_{1}}-\frac{1}{2}-\frac{1}{2}-G M 2 m\left(\frac{1}{R}-\frac{1}{r_{1}}\right)=G M 2 m\left(-\frac{1}{R}-\frac{1}{2 a}\right)\right.
$$

where a is the major semi-axis of the satellite's osbit, In this case wo obtain from (9) in a similar way the following relation:

$$
\begin{equation*}
\left.\pm \omega=\sqrt{\frac{15}{16 r}} \cdot\left(\frac{G M}{a_{1}^{2}-(B 8 r)^{2}}-\cdots \frac{G M}{a_{2}^{2}-(3 / 8 r)^{2}}\right) \right\rvert\, \tag{12}
\end{equation*}
$$

At the movement of the the satelite in one orbit only we should have $a_{\mathrm{i}}:=a_{2}=$ const, $E_{\mathrm{k}}+E_{\mathrm{p}}=$ const and $\omega-=0$, i. e. in such a case the axial rotation of the salellite does not depend on its orbital motion.

For a homogeneous cylindrical satelifte with moment of inertia $I=2 m\left(\frac{r^{2}}{3}+\frac{z^{2}}{4}\right)$, we obtain the following relation
where r is the rotational radius of the satelifte equal to $H / 2, z$ is the radius of its cross-section. Passing from one orbit to another the satellite turns as an aircraft propeller, in the plate of its orbit. (We neglect the precession.)

The formulae (11), (12) and (13) give the angular velocity of a non-stabilized satellite if in the first orbit $a=0$. If it the first (initial) orbit $\omega>0$ or $\omega<0$, fommlae (12), and (11) and (13) as well, should be written as follows:

$$
\begin{equation*}
\pm \lambda \omega=\sqrt{\frac{1}{6} \dot{r} \cdot\left|\left(\frac{G M}{a_{1}^{2}-(3 / 8 r)^{2}}-\frac{G M}{a_{2}^{2}-(3 / 8 r)^{2}}\right)\right|, ~} \tag{12a}
\end{equation*}
$$

where $A t w$ is the increment (postive or negative) of the angular velocity of the axial rotation of the satellite during a certain interval of lime $A T$, during which a_{1} changes to a_{2}

As $a^{2} \geqslant(3 / 8 \theta)^{2}$, formulae (12), and (11) and (12a) as well can be written in this form

$$
\begin{equation*}
\pm \omega=\sqrt{\frac{15}{16 r}\left|\left(\frac{G M}{a_{1}^{2}}-\frac{G M}{a_{2}^{2}}\right)\right|} \tag{14}
\end{equation*}
$$

It is known that the light pressure provokes an essential perturbation of the orbit of the light spherical satellites at a height $>700 \mathrm{~km}$. By such a satellite we could verify formula (14). Determining the major semi-axis of ite orbif in the beginuing and in the end of a certain interval of tine $A T$, we calctate ω by fomula (14) and compare the result with the incremen of ω during the same interval $A T$ obtained by formula (15)

$$
\begin{equation*}
\pm \Delta \omega \quad j \omega_{1}-\omega_{2} \mid, \tag{15}
\end{equation*}
$$

where ω_{1} and ω_{0} are the observed angular velocities of the axial rotation of the satellite in the beginning and in the end of the same interval $A T$. The results obtained could be verified by a special satellite launched for this purpose if it is possible to change the najor semi-axis of its orbit it desired values.

The relations (7) and (8) could be verified under laboratory conditions.
A synchronous change of the orbital period and the period of the axial rotation of the second Soviet satellite (1957β) and the last slage of the third Soviet satelite ($1958 \delta_{1}$) with the cliange of the solar activity has been really
established [3]. The observed increase of the rotational period about the centre of mass of the last stage of the third Soviet satelite during its spiral approach to the Earth (from 8 to 9.5 s) [4] can be also explained by relation (13). The atmospheric resistance is believed to play a secondary role bere. This factor is negligible for the massive satellites moving in the upper atmosphere.

At the verification of the relations obtained we must have in mind that the vector of the last push of the rocket does not always pass through the centre of mass of the satellite and would turn it about that centre [5]. Consequently, we must take the initial conditions into account.

The calculations by formula (12) show that a homogeneous spherical satellite, e. g. with radius $r=8 \mathrm{~m}$, passing from one orbit with major semi-axis $a_{1}=6,500 \mathrm{~km}$ to a higher one with $a_{2}=6,650 \mathrm{~km}$, at initia! condition $\omega=0$, turns directly about its centre of mass with angular velocity $+\omega=0,222 \mathrm{rad} / \mathrm{s}$, or with a period $t=28$ seconds. The same result but with retrograde rotation ($-\omega=0.222 \mathrm{rad} / \mathrm{s}$) should be obtained if this satellite passes from the higher to the lower orbit.

It is known that the equations of the passive flight of the artificial cosmic objects do not, as a matter of principle, differ from the equations of the motion of the natural celestial bodies. For this reason we could say that the relation (12) should be valid for the celestial bodies ass well. The difference will be only in the corrections depending on the corresponding moment of inertia and the inclination of the rotational axis of the body to the plane of its orbit.

In rigid body dynamics it is assumed that the rotational motion of spherical and homogeneous bodies does not depend on their advance motion. The differential equations of the translatory motion and that of the rotational motion of the body about its centre of mass are considered separately. This statement is true, as we have seen, at rectilinear motion and at uniform circular motion of the body. It is not true at non-utiform circular or curvilinear motion of the body. The different forces of inertia of the particles of the body which appear in such a case have not been taken into account.

An important role for the difficulties arising at the solution of the problem of the axial rotation of the celestial bodies is played by the theorem of Lagran-ge-Laplace for the stability of the solar system. We have seen that at $a=$ const the axial rotation of the satellite does not really depend on its orbital motion. The investigations of the series which are used in celestial mechanics in the theory of perturbations show, however, that they are divergent as a rule. The theorem of Lagrange-Laplace is not strictly proved. A. Friedman has proved that the Universe is periodically expanding and contracting [7]. The expansion of the Universe was confirmed by observation (Hubble's law). According to R. Zaikov the Sun has orbital acceleration $[8,9]$. The inner satellite of the planet Mars, Phobos, also has orbital acceleration [6]. Consequently, the solar system is not stable during long periods of time lasting millions and billions of years.

According to the hypothesis of V. G. Fessenkov the planets of the solar system had been formed far nearer to the Sun, in comparison with their present distance. Consequently, during the first period of their existence the planets had been moving off in spirals from the Sun, and according to relation (12) they obtained their direct axial rotation. The observed retrograde rotation of the planet Venus could be explained with the same relation (12) if this planet has orbital acceleration. According to N. Bonev the young planet should have a retrograde axial rotation thatiks to the Keplerian distribution of the velocities of its particles $[9]$. Such an explanation of the retrograde rotation of

Venus does not contradict our theory. According to (12), at the moving off from the Sun the unequal forces of inertia of the perticles of the planet could brake the retrograde rotation of the planet and turn it directly in the course of time. During the second period of existence of the planet, when it approaches the Sun, the forces of inertia which are acting in the opposite direction could brake the direct rotation of the planet and turn it retrogradely. It is necessary to know how the major semi-axis of the orbit of Venus is changing. This will show us whether Venus is a young or old planet.

The transition of the direct axial rotation of the celestial body to a retrograde rotation is probably achieved simultaneously with the change of the inclination of its rotational axis to the normal to its orbit plane. At an inclination of $>90^{\circ}$ the direct rotation turns to retrograde. The inclination of the planet Uranus, which is rotating retrogradly, is 98°. The inclination of Venus is $\approx 90^{\circ}$ (probably $>90^{\circ}$. The Moon is in a state of gravitational stabilisation.

Formula (12) or (14) make it possible to determine approximately at what distance from the Sun the planets had been formed. For our Earth, for example, at $M=2 \times 10^{33} \mathrm{~g}$ (the mass of the Sun), $a_{2}=1.496 \times 10^{13} \mathrm{~cm}, \omega=7.292 \times$ $10^{-5} \mathrm{rad} / \mathrm{s}$, formula (14) gives $a_{1}=56$ millions of kilometres. This result is in a very good agreement with Fessenkov's hypothesis.

The orginal experiment with the homogeneous sphere giving a qualitative explanation of the axial rotation of the celestial bodies, whith is the base for our investigation of this phenomenon, was performed by the author's father Rasho Tilchev in 1932.

- Acknowledgement. I am vory gratefal to the staff of the Central Laboratory for Space Research of the Bulgarian Academy of Sclences for the kind support in publishing my paper.

References

1. Шмидт, О. Ю. Избранные труды, геофизика и космогония. - АН СССР. М., 1960.
2. Артемьев, А. В., В. В. Радзиевски. О происхождении осевого вращения планет. Астрономический журнал, Том XVII, Вып. I. М., 1965.
3. Григоревский, В. М. О связи периода вращения спутника $1958 \delta_{1}$ с солнечной активностью. - В: Исскуственные спутники Земли, вып. 17. М., 1963, 82.
4. К инг-Хили. Д. Исскусственные спутники и научные исследования. М., 1963.
5. Белицкий, Б. В., Ю. В. Зонов. Вращение и ориентация третьего советского спутника. В : Искусственные спутники Земли, вып. 7. М., 1961, 32.
6. Демин, В. Г. Судьба Солнечной системы. М., 1969.
7. Тростников, В. Н. Дифференциальные уравнения в современной науке. $\mathrm{M}_{4} 1966$.
8. Зайков, Р. Г. О зависимости между обращением системы млечного путн и геологическими циклами. - Доклаты БАН, 21, 6, 1968.
9. Зайков, Р. Г. Космологические основы абсолютноя геодронологии. - Дзв. секц. астрономия. Том I С., 1970.
10. Бонев, Н. О ретроградной ротации Венеры (II), - Нзв. секц. астрономин, Том І. С., 1970.

Решение проблемы о вращении небесных тел

T. P. Тилчев

(Pesfие)

В өтой статье дается теоретическое объяснение экспериментально установленной зависхмости между неравномерным круговым поступательным движением однородной сферы и ее собственным осевым вращением. На основаєии полученной зависимости предлагается оригинальное решение проблемы осевого вращения небесных тел и неориентированных спутников Земли.

