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1. Introduction

For explanation of the axlal rofation of the celestial bodies several hypotheses
are proposed. Samidt [1) considers the direct rolation of the planets and of
the Sun as a result of the falling meteoric parlicles upon them. Artemyev
and Radzievskii [2] assume that the metecric particles falling on the planet
{ransfer their positive momentums only and iwrn it directly about ils own
axis. Recently it was discovered, however, thal Venus has a retrograde rota-
tion. The planet Uranus is also rotating retrogradely. Alfven considers the axi-
al rotation of the celestial bodies as a result of the action of magnetic forces.
These hypotheses are not satisfactory and the phenomenon is still a topical
problem, In this paper a new explanation of this phenomenon is proposed.

2. Method and Results

We proceed from the foliowing original experiment, A bomogeneous sphere
with radius r is circulating in an circumference with radius r, lying in a hori-
zontal plane. The sphere can rotate freely about its own axis perpendicular to
the plane of the circumference. The system has two degrees of freedom. Let
us designate by @, the initial angular velocily of the circular motion of the
sphere, by £, the angular velocity of its circular molion at the end of a cer-
tain interval of time A7 and by w the angular velocity of the proper axial
rotation of the spbere. We observe that

1. At £,=0,=const, i. e. at a uniform circular motion w=0; the sphere
does not rotate about its own axis.

9. At £,>0,, i. e, at a decelerate circular motion w>0; the sphere ob-
tains a direct axial rotation.

3. At £2,< 8y, i. e. at an accelerate circular motion @< 0; the sphere
obtains a refrograde axial rotation.

#For open discussion,
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It is not difficult to see that the axial rotation of the sphere is caused by
the action of the unequal forces of inertia of the particles of the sphere which
appear at the change of the angular velocity of its circular motion. The value
of the forces of inertia of the particles of the sphere dependson their distance
to the centre of the circumference and on the difference 10 - 62, 1.

The angular velocity of the circular motion
of the sphere can be changed by direct action
or by the change of the radinus of the
citcumference from r, to r,.

We have to determine the angular velocity
of the axial rotation of the sphere w obtained
at the change of the angular velocity of its
citcular motion from ©, to 0,

We solve this problem in the following
way. The cylindrical surface passing through
the circumfercnce and the rotational axis of the
sphere divides the sphere in two paris: exter-
nal one with mass m, and internal one with
mass mg, as shown in Fig. 1. We solve the
problem al r;»r so that we could assume
m,—m, -m. A similar case we have, for
example, at a spherical arlifical Earth’s satellite.
The parl of its orbit limited by the satellife is
alinost a straight line.

C{r We designate by £, and F; the resuliants

of the particles’ forces of inertia of the external

Fig. 1 {dashed) and internal hemispheres. We assume

with sufficient accuracy that at 7,%r the

fulerums of the resultants F. and F; are al

a distance equal to 3/87 from the cenire of the sphere. We designate the force,

which turns the sphere about its axis (directly at ©,>@Q, as shown iu
Fig. 1, and retrogradely at 0,<0,} by F.

Obviounsly

(1) F=F.- F,

or

(2} Fomd,—(—may,

where a, and g, are the tangential accelerations of the mass-cerires of the exier-
nal and internal hemispheres,

At the change of the angular velocity of the circular motion of the sphere
from (2, to £2, the linear speed of the mass-centre of ihe external bhemi-
sphere changes from V. to Vi, and that of the iniermal hLemisphere from
Vit to Vis. At the same time the mass-centre of the external hemisphere, where
the fulcrum of the force F is formally assumed, passes a path S- Sy—Se.
Multiplying both parts of (2) by ds and Integrating in the above limils we
cbtain

Say | Vay Viz Vei Vi
(3) deS“-*-med'U‘—(——m‘J afv) - :mfdfo — m‘[d'v!,
Ve 11 i i2

Sei | Vs
j (mvgl mViQ) (m‘/ﬁ mV?g)
4 "_| T R A S T T A

where A is the work of the {orce F in the path S.
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The kinetic energy E of the obtained axial rotation of the sphere is equal
to the work of the force F, i e. E=A

3 2mrtol

where 2m is the mass of the sphere. From (4} and (5) we obtain
4rie? . ;
(6) TE e VRV 5
V=0, (r,-+3/8r); Ve=-82,(r113/8r);
V“ :.(.)1 (!’1 —3;’81“); V12= Qg (rl—3;‘f8r).
With the above values of Ve, Ves, Viz and Vi in (6) we obtain

0 o=/ | (21—ap|.

If the change of the augular velocity of the circular motion of the sphere
is performed by changing the radius of the circumference from r, to r, for-
mula (7) takes the form

158 o] 2
(8) TOF V‘a‘? | W2 - Qrall

The relations (7) and (8) are valid fn an uniform field of gravitation.
For a homogeneous spherical satellite moving in a non-uniform field of gra-
vitation, however, (4} has the form

' {mV? > mv2, ’ ((mi/?l i) (mi/122 ]|
©) A=:B=|[( 2-+Ep1)—(—2- -+Ep‘*‘)]-— Ty e ) T—Jrfs;ﬁ) Iy

where E¢ and Fi are the potential energies of the external and in-
ternal hemispheres of the satellite. At our laboratory experiment we have
Ed=E2—E!=E’_mgh, so that in this case (9) is reduced to (4).

The fotal energy of a homogeueous spherical Earth’s sateilite moving in
a circular orbit is

Eut-By="32 1 GM2m (- — 7} = CM2m{g—y-)-

where A is the mass of the Earth, R is the average radius of the Earth, r
is the distance of the satellite to the centre of the Earth. For such a satellite
passing from one orbit to another one (9) takes the form

2mrtw? . ' 1 1 1 1 1
=G [ (- o el e |
(10}
1 1 1 1
T [(T 20, —axs‘r)) "{_R“_iirz_ﬂézs_r))]} ‘
From {10) we obtain
15 '/ GM TaM
11 :V.__ v, .
o so=lfi (Fomr o)

The total energy of a homogeneous spherical Earth’s Satellite moving in
an eliptical orbit is
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where 4 is the major semi-axis of the satellite’s orbit, In this case we obtain
from (9} in a similar way the following relalion:

5 oM oMy
(12) Fo=1 e (a @ ai—(3/8r )|

At the movement of the the satellite in one orbil only we should have
@, = p—=const, Fx+ £, =const and w =90, i.e.in such a case the axial rotation
of the satellite does not depend on its orbital motion,

For a homogeneous cylindrical salellite with moment of inertia /= Qm(% - %2) :

we obtain the following relation

i =TT
( 4--) ( e gy |,

where r is the rotational radius of the satellite equal to /2, » is the radius
of its cross-section. Passing from one orbit to another ihe safellife turns as an
aircraft propeller, in theé plane of its orbil. {We neglect the precession.)

The formulae (11}, (12} and (13} give the angular velocity of a non-sta-
bilized satellite it in the first orbit w=0. If {n the first {initial) orbilt w>0 or
w0, formulae {12}, and (11} and (13) as well, should be writien as follows:

(12a) o= (= 84— - e
lbr “1" (der} :j -(3/8¢)2 ||

(13} =

where Aw is the increment (positive or negative) of the angular velocity of
the axial rotation of the satellite during a certain interval of time AT, during
which a, changes to g,.

As a®=(3/8r), formniae (123, and (11) and (12a} as well can be writien
in this form

(14) Hriey= ![;’]![27 ((”\A (}M)
|

wt a

It is known that the light pressure provokes an essential perturbation of the
orbit of the light spherical safeliites at a height =700 km. By such a satellite
we could verify formmla {14), Determining the major semi-axis of its orbil in
tie beginning and in the end.of a ceriain interval of tine AT, we calculale
w by formula (14) and compare the result with the increment of w during the
same interval 47 obtained by formula (15)

(15) tdo jo,—wsl,

where w; and w, are the observed angular velocities of lhe axial rotation of the
satellite in the beginning and in the end of the same interval AT. The results ob-
tained could be verified by a special satellile launched for this purpose i it is
possible to change the major semi-axis of iis orbit in desired values.

The relations {7) and (8} could be verilied under laboratory conditions.

A synchronous change of the orbital peried and the pericd of the axial
rotation of the second Soviet satellite (1957 8} and the last stage of the third
Soviet satellife (19580,) with the change ot the solar activity has bcen really
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established [3]. The observed increase of the rotational period about the cen-
fre of mass of the last stage of the third Soviet satellite during its spiral ap-
proach to the Earth (from 8 to 9.5 s) [4] can be also explained by relation
(13). The atmospheric resistance is believed to play a secondary role here,
This factor is negligible for the massive satellites moving in the upper atmo-
sphere.

b At the verification of the relations obtained we must have in mind that
the vector of the last push of the rocket does not always pass through the
centre of mass of the satellite and would turn it about that centre [5]. Conse-
quently, we must take the initial conditions into account.

The calculations by formula {12) show that a homogeneous spherical satei-
lite, e. g with radius r=8m, passing from one orbit with major semi-axis
2,=6,500 km to a higher one with @,=6,650 km, at ipitial condition w=8,
turns directly about ils centre of mass with angular velocity 4+ =0.222 rad/s,
or with a period #=28 seconds. The same result but with retrograde rotation
(—w=0.222 rad/s) should be obtained if this satellite passes from the higher
to the lower orbit.

It is known that the equations of the passive flight of the artificial cos-
mic objects do not, as a matter of principle, differ from the equatfons of the
motion of the natural celestial bodies. For this reason we could say that the
relation (12) should be valid for the celestial bodies as well. The diiference
will be only in the corrections depending on the corresponding moment of
inertia and the inclination of the rotational axis of the body fo the plane of its orbit.

In rigid body dynamics it is assumed that the rotational motion of sphe-
rical and homogeneous bodies does not depend on their advance motion. The
differential equations of the translatory motion and that of the rotational mo-
tion of the body about its centre of mass are considered separately. This stafe-
ment is true, as we have seen, at rectilinear motion and at uniform circular
motion of the body. It is not true at non-uniform circular or curvilinear mo-
tion of the body. The different forces of inertia of the particies of the body
which appear in such a case have not been taken into account,

An important role for the difficulties arising at the solution of the problem
of the axial rotation of the celestial bodies is played by the theorem of Lagran-
ge-Laplace for ‘the stability of the solar system. We have seen that at a=
const the axial rotation of the satellite does not really depend on its orbit-
al motion. The investigations of the series which are used in celestial mecha-
nics in the theory of perturbations show, however, that they are divergent as
a rule. The theorem of Lagrange-Laplace is not strictly proved. A. Friedman
has proved that the Universe is periodically expanding and contracting (7]
The expansion of the Universe was confirmed by observation (Hubble’s law).
According to R. Zaikov the Sun has orbital acceleration [8,9]. The inner satel-
lite of the planet Mars, Phobos, also has orbital acceleration [6]. Consequently,
the solar system is not stable during long periods of time lasting millions and
billions of years.

According to the hypothesis of V. G. Fessenkov the planets of the solar
system had been formed far nearer to the Sum, in comparison with their pre-
sent distance. Consequently, during the first period of their existence the pla-
nets had been moving off in spirals from the Sun, and according to relation
(12) they obtained their direct axial rotation. The observed retrograde rotation
of the planet Venus could be explained with: the same relation (12) if this pla-
net has orbital ‘acceleration. According to N. Bonev the young planet should
have a relrograde axial’ rotation-thanks to the Keplerian distribution of the ve-
locities of its particles [9} Such-au explanation of:the retrograde rofation of

5 KocMMIecky HACACIEIHUA, KH. 3 65



Venus does not contradict our theory., According to (12), at the moving off
from the Sun the unequal forces of ineriia of the perticles of the planet could
brake the retrograde rotation of the planet and turn it directly in the course
of time. During the second period of existence of the planet, when it
approaches the Sun, the forces of inertia which are acting in the opposite
direction could brake the direct rotation of the planet and turn it retrograde-
ly. It is necessary to know how the major semi-axis of the orbit of Venus is
changing. This will show us whether Venus is a young or old planet.

The transition of the direct axial rotation of the celestial body to a re-
trograde rotation is probably achieved simultaneously with the change of the
inclination of its rotational axis to the normal to its orbit plane. At an incli-
nation of >90° the direct rotation turns to retrograde. The inclination of the
planet Uranus, which is rotating retrogradly, is 98°. The inclination of Venus
is~90° (probably >90°). The Moon is in a state of gravitational stabilisation.

Formula (12) or (14) make it possible to determine approximately at what
distance from the Sun the planets had been formed. For our Earth, for example,
at M=2x10% g (the mass of the Sun), @=1.49610" cm, 0=7.292%
107® rad/s, formula (14) gives a,=56 millions of kilometres, This result is
in a very good agreement with Fessenkov’s hypothesis.

The orginal experiment with the homogeneous sphere giving a qualitative
explanation of the axial rotation of the celestial bodies, which is the base for
our investigation of this phenomernon, was performed by the author’s father
Rasho Tilchev in 1932.
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Pemenve npobaeMbl O BpAlEHAH HebGeCHBIX Ted
T. P. Tuaues

(Pesnome)

B sToll cTaTbe HAETCH TEOPETHUECKOe OOBSCHERNHE SKCAEPHMEHTANLHO YCTAHOB-
NeHEOH 3aBMCHMOCTH MENY HepaBHOMEDHBIM KPYroBbIM MOCTYNATE/LHEIM JBH-
JKeHHeM ONHODOJHOH cdepbl M ee COOCTBEHHLIM OCEBEIM BDAIIEHHEM. Ha ocro-
BAHMM [OJYHEHHOH SABMCHMOCTH NPENJaraeTCsi OPUrHHANBHOE PELICHHE npo6e-
MBl OCEBOrO BpAULeRHs HeGECHHIX Tex M HeOpHEeHTHPOBAHHKIX CITyTHHKOB JeMIH.
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